123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249 |
- // Copyright 2016 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // +build s390x
- #include "textflag.h"
- // Vector register range containing CRC-32 constants
- #define CONST_PERM_LE2BE V9
- #define CONST_R2R1 V10
- #define CONST_R4R3 V11
- #define CONST_R5 V12
- #define CONST_RU_POLY V13
- #define CONST_CRC_POLY V14
- // The CRC-32 constant block contains reduction constants to fold and
- // process particular chunks of the input data stream in parallel.
- //
- // Note that the constant definitions below are extended in order to compute
- // intermediate results with a single VECTOR GALOIS FIELD MULTIPLY instruction.
- // The rightmost doubleword can be 0 to prevent contribution to the result or
- // can be multiplied by 1 to perform an XOR without the need for a separate
- // VECTOR EXCLUSIVE OR instruction.
- //
- // The polynomials used are bit-reflected:
- //
- // IEEE: P'(x) = 0x0edb88320
- // Castagnoli: P'(x) = 0x082f63b78
- // IEEE polynomial constants
- DATA ·crcleconskp+0(SB)/8, $0x0F0E0D0C0B0A0908 // LE-to-BE mask
- DATA ·crcleconskp+8(SB)/8, $0x0706050403020100
- DATA ·crcleconskp+16(SB)/8, $0x00000001c6e41596 // R2
- DATA ·crcleconskp+24(SB)/8, $0x0000000154442bd4 // R1
- DATA ·crcleconskp+32(SB)/8, $0x00000000ccaa009e // R4
- DATA ·crcleconskp+40(SB)/8, $0x00000001751997d0 // R3
- DATA ·crcleconskp+48(SB)/8, $0x0000000000000000
- DATA ·crcleconskp+56(SB)/8, $0x0000000163cd6124 // R5
- DATA ·crcleconskp+64(SB)/8, $0x0000000000000000
- DATA ·crcleconskp+72(SB)/8, $0x00000001F7011641 // u'
- DATA ·crcleconskp+80(SB)/8, $0x0000000000000000
- DATA ·crcleconskp+88(SB)/8, $0x00000001DB710641 // P'(x) << 1
- GLOBL ·crcleconskp(SB), RODATA, $144
- // Castagonli Polynomial constants
- DATA ·crccleconskp+0(SB)/8, $0x0F0E0D0C0B0A0908 // LE-to-BE mask
- DATA ·crccleconskp+8(SB)/8, $0x0706050403020100
- DATA ·crccleconskp+16(SB)/8, $0x000000009e4addf8 // R2
- DATA ·crccleconskp+24(SB)/8, $0x00000000740eef02 // R1
- DATA ·crccleconskp+32(SB)/8, $0x000000014cd00bd6 // R4
- DATA ·crccleconskp+40(SB)/8, $0x00000000f20c0dfe // R3
- DATA ·crccleconskp+48(SB)/8, $0x0000000000000000
- DATA ·crccleconskp+56(SB)/8, $0x00000000dd45aab8 // R5
- DATA ·crccleconskp+64(SB)/8, $0x0000000000000000
- DATA ·crccleconskp+72(SB)/8, $0x00000000dea713f1 // u'
- DATA ·crccleconskp+80(SB)/8, $0x0000000000000000
- DATA ·crccleconskp+88(SB)/8, $0x0000000105ec76f0 // P'(x) << 1
- GLOBL ·crccleconskp(SB), RODATA, $144
- // func hasVectorFacility() bool
- TEXT ·hasVectorFacility(SB), NOSPLIT, $24-1
- MOVD $x-24(SP), R1
- XC $24, 0(R1), 0(R1) // clear the storage
- MOVD $2, R0 // R0 is the number of double words stored -1
- WORD $0xB2B01000 // STFLE 0(R1)
- XOR R0, R0 // reset the value of R0
- MOVBZ z-8(SP), R1
- AND $0x40, R1
- BEQ novector
- vectorinstalled:
- // check if the vector instruction has been enabled
- VLEIB $0, $0xF, V16
- VLGVB $0, V16, R1
- CMPBNE R1, $0xF, novector
- MOVB $1, ret+0(FP) // have vx
- RET
- novector:
- MOVB $0, ret+0(FP) // no vx
- RET
- // The CRC-32 function(s) use these calling conventions:
- //
- // Parameters:
- //
- // R2: Initial CRC value, typically ~0
- // R3: Input buffer pointer, performance might be improved if the
- // buffer is on a doubleword boundary.
- // R4: Length of the buffer, must be 64 bytes or greater.
- //
- // Register usage:
- //
- // R5: CRC-32 constant pool base pointer.
- // V0: Initial CRC value and intermediate constants and results.
- // V1..V4: Data for CRC computation.
- // V5..V8: Next data chunks that are fetched from the input buffer.
- //
- // V9..V14: CRC-32 constants.
- // func vectorizedIEEE(crc uint32, p []byte) uint32
- TEXT ·vectorizedIEEE(SB), NOSPLIT, $0
- MOVWZ crc+0(FP), R2 // R2 stores the CRC value
- MOVD p+8(FP), R3 // data pointer
- MOVD p_len+16(FP), R4 // len(p)
- MOVD $·crcleconskp(SB), R5
- BR vectorizedBody<>(SB)
- // func vectorizedCastagnoli(crc uint32, p []byte) uint32
- TEXT ·vectorizedCastagnoli(SB), NOSPLIT, $0
- MOVWZ crc+0(FP), R2 // R2 stores the CRC value
- MOVD p+8(FP), R3 // data pointer
- MOVD p_len+16(FP), R4 // len(p)
- // R5: crc-32 constant pool base pointer, constant is used to reduce crc
- MOVD $·crccleconskp(SB), R5
- BR vectorizedBody<>(SB)
- TEXT vectorizedBody<>(SB), NOSPLIT, $0
- XOR $0xffffffff, R2 // NOTW R2
- VLM 0(R5), CONST_PERM_LE2BE, CONST_CRC_POLY
- // Load the initial CRC value into the rightmost word of V0
- VZERO V0
- VLVGF $3, R2, V0
- // Crash if the input size is less than 64-bytes.
- CMP R4, $64
- BLT crash
- // Load a 64-byte data chunk and XOR with CRC
- VLM 0(R3), V1, V4 // 64-bytes into V1..V4
- // Reflect the data if the CRC operation is in the bit-reflected domain
- VPERM V1, V1, CONST_PERM_LE2BE, V1
- VPERM V2, V2, CONST_PERM_LE2BE, V2
- VPERM V3, V3, CONST_PERM_LE2BE, V3
- VPERM V4, V4, CONST_PERM_LE2BE, V4
- VX V0, V1, V1 // V1 ^= CRC
- ADD $64, R3 // BUF = BUF + 64
- ADD $(-64), R4
- // Check remaining buffer size and jump to proper folding method
- CMP R4, $64
- BLT less_than_64bytes
- fold_64bytes_loop:
- // Load the next 64-byte data chunk into V5 to V8
- VLM 0(R3), V5, V8
- VPERM V5, V5, CONST_PERM_LE2BE, V5
- VPERM V6, V6, CONST_PERM_LE2BE, V6
- VPERM V7, V7, CONST_PERM_LE2BE, V7
- VPERM V8, V8, CONST_PERM_LE2BE, V8
- // Perform a GF(2) multiplication of the doublewords in V1 with
- // the reduction constants in V0. The intermediate result is
- // then folded (accumulated) with the next data chunk in V5 and
- // stored in V1. Repeat this step for the register contents
- // in V2, V3, and V4 respectively.
- VGFMAG CONST_R2R1, V1, V5, V1
- VGFMAG CONST_R2R1, V2, V6, V2
- VGFMAG CONST_R2R1, V3, V7, V3
- VGFMAG CONST_R2R1, V4, V8, V4
- // Adjust buffer pointer and length for next loop
- ADD $64, R3 // BUF = BUF + 64
- ADD $(-64), R4 // LEN = LEN - 64
- CMP R4, $64
- BGE fold_64bytes_loop
- less_than_64bytes:
- // Fold V1 to V4 into a single 128-bit value in V1
- VGFMAG CONST_R4R3, V1, V2, V1
- VGFMAG CONST_R4R3, V1, V3, V1
- VGFMAG CONST_R4R3, V1, V4, V1
- // Check whether to continue with 64-bit folding
- CMP R4, $16
- BLT final_fold
- fold_16bytes_loop:
- VL 0(R3), V2 // Load next data chunk
- VPERM V2, V2, CONST_PERM_LE2BE, V2
- VGFMAG CONST_R4R3, V1, V2, V1 // Fold next data chunk
- // Adjust buffer pointer and size for folding next data chunk
- ADD $16, R3
- ADD $-16, R4
- // Process remaining data chunks
- CMP R4, $16
- BGE fold_16bytes_loop
- final_fold:
- VLEIB $7, $0x40, V9
- VSRLB V9, CONST_R4R3, V0
- VLEIG $0, $1, V0
- VGFMG V0, V1, V1
- VLEIB $7, $0x20, V9 // Shift by words
- VSRLB V9, V1, V2 // Store remaining bits in V2
- VUPLLF V1, V1 // Split rightmost doubleword
- VGFMAG CONST_R5, V1, V2, V1 // V1 = (V1 * R5) XOR V2
- // The input values to the Barret reduction are the degree-63 polynomial
- // in V1 (R(x)), degree-32 generator polynomial, and the reduction
- // constant u. The Barret reduction result is the CRC value of R(x) mod
- // P(x).
- //
- // The Barret reduction algorithm is defined as:
- //
- // 1. T1(x) = floor( R(x) / x^32 ) GF2MUL u
- // 2. T2(x) = floor( T1(x) / x^32 ) GF2MUL P(x)
- // 3. C(x) = R(x) XOR T2(x) mod x^32
- //
- // Note: To compensate the division by x^32, use the vector unpack
- // instruction to move the leftmost word into the leftmost doubleword
- // of the vector register. The rightmost doubleword is multiplied
- // with zero to not contribute to the intermedate results.
- // T1(x) = floor( R(x) / x^32 ) GF2MUL u
- VUPLLF V1, V2
- VGFMG CONST_RU_POLY, V2, V2
- // Compute the GF(2) product of the CRC polynomial in VO with T1(x) in
- // V2 and XOR the intermediate result, T2(x), with the value in V1.
- // The final result is in the rightmost word of V2.
- VUPLLF V2, V2
- VGFMAG CONST_CRC_POLY, V2, V1, V2
- done:
- VLGVF $2, V2, R2
- XOR $0xffffffff, R2 // NOTW R2
- MOVWZ R2, ret + 32(FP)
- RET
- crash:
- MOVD $0, (R0) // input size is less than 64-bytes
|